Parallel and distributed clustering framework for big spatial data mining
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Parallel and distributed computing for data mining
Similar scenarios will occur in other areas: we will see large numbers of radiological images generated in hospitals and immense product and customer databases as the Internet and e-commerce continue to expand.1 Exploring useful information from such data will require efficient parallel algorithms running on high-performance computing systems with powerful parallel I/O capabilities. Without suc...
متن کاملMining Spatial Data via Clustering
Contributions from researchers in Knowledge Discovery are producing essential tools in order to better understand the typically large amounts of spatial data in Geographical Information Systems. Clustering techniques are proving to be valuable in providing exploratory analysis functionality while supporting approaches for automated pattern discovery in spatially referenced data and for the iden...
متن کاملSpatial Clustering Technique for Data Mining
For mining features from the social web, analysis of the shape, detection of network topology and corresponding special meanings and also clustering of data become tools, because the information obtained by these tools can create useful data behind the social web by revealing its relationships and the relative positions of data. For example, if we want to understand the effect of someone’s stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Parallel, Emergent and Distributed Systems
سال: 2018
ISSN: 1744-5760,1744-5779
DOI: 10.1080/17445760.2018.1446210